From Phonons to Phase Stability
Licentiatavhandling, 2025
This thesis presents a density functional theory (DFT)–based framework for investigating the perovskite oxide CaMnO3-δ (0 ≤ δ ≤ 0.5), a promising oxygen carrier for CLC applications. Using total energy and phonon calculations, thermodynamic quantities such as heat capacities, formation enthalpies, and Gibbs free energies were estimated and related to oxygen vacancy formation. The results reveal how increasing oxygen deficiency affects phase stability and electronic structure, including a transition from semiconducting to metallic behaviour and a reduction of Mn oxidation states.
The computed formation enthalpies were combined with experimental thermodynamic data to construct a phase diagram of the Ca-Mn-O system, providing insight into redox stability under CLC conditions. The developed computational framework links atomic-scale modelling to macroscopic material behaviour and offers a foundation for the predictive design of doped or related perovskite oxygen carriers.
Oxygen vacancies
Thermodynamic properties
CaMnO3-δ
Perovskite oxides
Electronic structure
Density Functional Theory (DFT)
Chemical-looping combustion (CLC)
Författare
Jonatan Gastaldi
Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik
Thermodynamic properties for metal oxides from first-principles
Computational Materials Science,;Vol. 233(2024)
Artikel i vetenskaplig tidskrift
First-Principles Estimation of Thermodynamic Properties and Phase Stability of CaMnO<inf>3−δ</inf> for Chemical-Looping Combustion
Energy & Fuels,;Vol. 39(2025)p. 9113-9120
Artikel i vetenskaplig tidskrift
Gastaldi, J., Brorsson, J., Hellman, A., & Mattisson, T. Electronic Structure and Defect-Induced Properties of Oxygen-Deficient CaMnO3−δ: Insights from First-Principles Calculations.
Uppblandade metaller för kemcyklisk förbränning
Vetenskapsrådet (VR) (2020-03487), 2021-01-01 -- 2024-12-31.
Ämneskategorier (SSIF 2025)
Materialkemi
Energiteknik
Styrkeområden
Energi
Utgivare
Chalmers
HC2, Hörsalsvägen 14
Opponent: Associate Prof. Martin Rahm, Department of Chemistry and Chemical Engineering, Chalmers University of Technology