Powder Bed Fusion – Laser Beam of a non-weldable Ni-base superalloy CM247LC: Microstructure control, crack mitigation, heat treatment and creep performance
Doktorsavhandling, 2025
powder bed fusion – laser beam
strain age cracking
solidification cracking
Ni-base superalloy
scan strategy
residual stresses
non-weldable superalloy
Författare
Ahmed Fardan Jabir Hussain
Chalmers, Industri- och materialvetenskap, Material och tillverkning
A. Fardan, G. Soundarapandiyan, V. Pandiyan, S.V. Petegem, E. Polatidis, S. Kazi, S. Goel, C. Pauzon, F. Marone, B. Mehta, A. Parrilli, H. Brodin, E. Hryha, Unveiling crack mitigation pathways in powder bed fusion – laser beam of CM247LC: An operando X-ray radiography study of Hf and nano-Y2O3 additions
Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy
Materialia,;Vol. 34(2024)
Artikel i vetenskaplig tidskrift
Microstructure tailoring for crack mitigation in CM247LC manufactured by powder bed fusion – Laser beam
Additive Manufacturing,;Vol. 99(2025)
Artikel i vetenskaplig tidskrift
A. Fardan, J. Schröder, J. Xu, H. Brodin, E. Hryha, Role of scan strategies in modulating solidification and strain age cracking in CM247LC processed by powder bed fusion – laser beam
A. Fardan, T. Mishurova, S. Jakob, G.A. Faria, J. Schröder, A. Evans, M. Thuvander, H. Brodin, E. Hryha, Interplay between γ′ precipitation, residual stress and strain age cracking in a high γ′ strengthened Ni-base superalloy produced by powder bed fusion – laser beam
Overcoming Strain Age Cracking In An Additively Manufactured Non-Weldable Ni-Base Superalloy Through HIP
Proceedings - Euro PM 2024 Congress and Exhibition,;(2024)
Paper i proceeding
Impact of Hot Isostatic Pressing on Microstructure Evolution and Creep Performance of Powder Bed Fusion–Laser Beam Processed CM247LC
Advanced Engineering Materials,;Vol. In Press(2025)
Artikel i vetenskaplig tidskrift
A. Fardan, J. Xu, A. Shaafi Shaikh, J. Gårdstam, U. Klement, J. Moverare, H. Brodin, E. Hryha, On the anisotropic creep behavior of a Ni-base superalloy CM247LC manufactured by powder bed fusion – laser beam
3D printing enables manufacturing of complex metal components with intricate features that are impossible to create with conventional manufacturing techniques. However, producing high-strength alloys for extreme environments, such as gas turbines, remains challenging due to cracking.
The current research investigates how to successfully 3D print CM247LC, one of the most advanced and complex "non-weldable" Nickel-base superalloys currently used. Components made from CM247LC can withstand extreme temperatures and heavy mechanical loads under the harsh conditions inside gas turbines. Superalloys are essential for the next-generation hydrogen-fueled gas turbines that promise cleaner energy, but cracking during manufacturing is the main limiting factor.
Cracks form through two mechanisms: formation of micro-cracks during 3D printing and macro-cracks during heat treatment. Fine-tuning laser parameters including laser power, scan speed, and scanning pattern help minimize these defects. Using lower energy input creates shallower melt pools, which helps prevent micro-cracks. In addition, customized processing and heat treatments reduce residual stresses and minimize the risk of larger cracks.
The resulting microstructures were optimized for high-temperature performance. Tailored microstructures were achieved using optimized parameters for 3D printing, allowing them to reach high-temperature properties approaching those of conventionally produced counterparts.
These findings pave the way for industrializing 3D-printed CM247LC superalloy components with improved functionality. This approach is crucial for hydrogen-fueled gas turbines, where complex geometries improve cooling, boost efficiency, and reduce emissions. With proper process control, 3D printing can deliver components for next-generation energy systems, enabling the transition to greener industrial and aerospace applications.
Material för gröna vätgasdrivna gasturbiner genom additivtillverkning
VINNOVA (2021-01005), 2021-05-03 -- 2024-04-30.
Skräddarsydd mikrostrukturkontroll genom AM som möjliggörare för gröna vätgasdrivna gasturbiner
VINNOVA (2024-02716), 2024-10-01 -- 2025-07-31.
Ämneskategorier (SSIF 2025)
Metallurgi och metalliska material
Bearbetnings-, yt- och fogningsteknik
Annan materialteknik
Drivkrafter
Hållbar utveckling
Styrkeområden
Produktion
Materialvetenskap
Infrastruktur
Chalmers materialanalyslaboratorium
Additiv tillverkning vid Chalmers
DOI
10.63959/chalmers.dt/5781
ISBN
978-91-8103-324-3
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5781
Utgivare
Chalmers
Virtual Development Laboratory (VDL), Chalmers University of Technology, Chalmers Tvärgata 4C, Göteborg
Opponent: Professor Daniele Ugues, Politecnico di Torino, Turin, Italy