Tactical decision making for autonomous trucks by deep reinforcement learning with total cost of operation based reward
Artikel i vetenskaplig tidskrift, 2026

We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.

Total cost of operation

Curriculum learning

Autonomous trucks

Deep reinforcement learning

Författare

Deepthi Pathare

Chalmers, Data- och informationsteknik, Data Science och AI

Volvo Group

Göteborgs universitet

Leo Laine

Volvo Group

Chalmers, Mekanik och maritima vetenskaper

Morteza Haghir Chehreghani

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science och AI

Artificial Intelligence Review

0269-2821 (ISSN) 1573-7462 (eISSN)

Vol. 59 1 27

Ämneskategorier (SSIF 2025)

Robotik och automation

Datavetenskap (datalogi)

Reglerteknik

DOI

10.1007/s10462-025-11448-8

Mer information

Senast uppdaterat

2025-12-02