Analytic K-semistability and local wall-crossing
Artikel i vetenskaplig tidskrift, 2025

For a small polarised deformation of a constant scalar curvature Kähler manifold, under some cohomological vanishing conditions, we prove that K-polystability along nearby polarisations implies the existence of a constant scalar curvature Kähler metric. In this setting, we reduce K-polystability to the computation of the classical Futaki invariant on the cscK degeneration. Our result holds on specific families and provides local wall-crossing phenomena for the moduli of cscK manifolds when the polarisation varies.

Författare

Lars Martin Sektnan

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Carl Tipler

Université de Bretagne Occidentale (UBO)

Annals of Global Analysis and Geometry

0232-704X (ISSN) 1572-9060 (eISSN)

Vol. 68 2 8

Ämneskategorier (SSIF 2025)

Geometri

Matematisk analys

Algebra och logik

DOI

10.1007/s10455-025-10011-6

Mer information

Senast uppdaterat

2025-12-03