Real rank of some multiplier algebras
Artikel i vetenskaplig tidskrift, 2025

We show that there exists a separable, nuclear C*-algebra with real rank zero and trivial K-theory such that its multiplier and corona algebra have real rank one. This disproves two conjectures of Brown and Pedersen. We also compute the real rank of the stable multiplier algebra and the stable corona algebra of countably decomposable type I∞ and type II∞ factors. Together with results of Zhang this completes the computation of the real rank for stable multiplier and corona algebras of countably decomposable factors.

Författare

Hannes Thiel

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Israel Journal of Mathematics

0021-2172 (ISSN) 15658511 (eISSN)

Vol. In Press -1 34

Ämneskategorier (SSIF 2025)

Matematisk analys

DOI

10.1007/s11856-025-2864-5

Mer information

Senast uppdaterat

2025-12-16