A priori and a posteriori error estimates for discontinuous Galerkin time-discrete methods via maximal regularity
Artikel i vetenskaplig tidskrift, 2026

The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.

Error estimates

Discontinuous Galerkin methods

Parabolic equations

Maximal regularity

UMD Banach space

Författare

Georgios Akrivis

Idryma Technologias kai Erevnas (FORTH)

University of Ioannina

Stig Larsson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

BIT Numerical Mathematics

0006-3835 (ISSN) 1572-9125 (eISSN)

Vol. 66 1 1

Icke-lokala deterministiska och stokastiska differentialekvationer: analys och numerik

Vetenskapsrådet (VR) (2017-04274), 2019-01-01 -- 2021-12-31.

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

Matematisk analys

DOI

10.1007/s10543-025-01094-5

Mer information

Senast uppdaterat

2025-12-15