On the strong Feller property of the heat equation on quantum graphs with Kirchhoff noise
Artikel i vetenskaplig tidskrift, 2025

We consider a so-called quantum graph with standard continuity and Kirchhoff vertex conditions where the Kirchhoff vertex condition is perturbed by Gaussian noise. We show that the quantum graph setting is very different from the classical one dimensional boundary noise setting, where the transition semigroup is known to be strong Feller, by giving examples and counterexamples to the strong Feller property. In particular, when the graph is a tree, and there is noise present in all of the boundary vertices except one, then the transition semigroup associated with the problem is strong Feller at any time T>0. This turns out to be also a necessary condition for equilateral star graphs. We also comment on the existence and uniqueness of the invariant measure and the regularity of the solution.

Quantum graph

White-noise vertex conditions

Invariant measure

Null-controllability

Strong Feller property

Transition semigroup

Författare

Mohamed Fkirine

Tampereen Yliopisto

Mihaly Kovacs

Budapesti Muszaki es Gazdasagtudomanyi Egyetem

Pázmány Péter Katolikus Egyetem

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Eszter Sikolya

Eötvös Loránd University (ELTE)

Semigroup Forum

0037-1912 (ISSN) 1432-2137 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

Beräkningsmatematik

Matematisk analys

DOI

10.1007/s00233-025-10599-y

Mer information

Senast uppdaterat

2025-12-23