Listening to silent signals: Wireless internal sensing redefines battery safety intelligence
Övrig text i vetenskaplig tidskrift, 2026
Internal battery failures often unfold silently, long before any surface signal gives them away, which remains a limitation that has constrained safety engineering for decades. Chen et al.’s recent Nature study breaks this impasse by embedding wireless, ultra-thin sensors directly inside commercial lithium-ion cells, capturing strain and thermal precursors that typically remain invisible until it is too late. In this Commentary, we argue that this work marks a paradigm shift from reactive to proactive battery safety intelligence by enabling autonomous awareness, alert and action. It compels a rethinking of battery management across four dimensions: the need for adaptive data interpretation to handle signal heterogeneity (resulted from different chemistries and operation conditions); the transition of BMS from passive monitoring to proactive maintenance before critical failure onsets; the evolution toward digitalized, distributed, cyber-physical BMS architectures; and the pursuit of other novel silent signals (such as gas signals) for deeper battery degradation insights. Ultimately, the widespread impact of the proposed wireless internal sensing hinges on cost-effective integration at scale and further integration of multiplex internal information fusion and decoupling, paving the way for intrinsically safer, self-aware battery systems in the electrified future.