Quadratic Equality Constrained Least Squares: Low-complexity ADMM for Global Optimality
Artikel i vetenskaplig tidskrift, 2026

This letter addresses the quadratic equality constrained least squares (QEC-LS) problem, a class of non-convex optimization problems that arise in various signal processing and communication applications. We revisit the alternating direction method of multipliers (ADMM) approach to QEC-LS problem and investigate its convergence and efficiency. Despite the inherent non-convexity, the proposed ADMM algorithm is proved to converge globally only requiring the quadratic term equal to a positive constant. Numerical results demonstrate that our method achieves global optimality with significantly reduced complexity compared to existing approaches such as semidefinite relaxation and primal-dual methods.

non-convex quadratic equality constraint

global optimality

ADMM

Författare

Tong Wei

Université du Luxembourg

Huiping Huang

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Linlong Wu

University of Electronic Science and Technology of China

Chong Yung Chi

National Tsing Hua University

M. R. Bhavani Shankar

Université du Luxembourg

Björn E. Ottersten

Université du Luxembourg

IEEE Signal Processing Letters

1070-9908 (ISSN) 15582361 (eISSN)

Vol. 33 361-365

Ämneskategorier (SSIF 2025)

Signalbehandling

Reglerteknik

DOI

10.1109/LSP.2025.3646132

Mer information

Senast uppdaterat

2026-01-20