Learning Efficient Recursive Numeral Systems via Reinforcement Learning
Paper i proceeding, 2025

It has previously been shown that by using reinforcement learning (RL), agents can derive simple approximate and exact-restricted numeral systems that are similar to human ones Carlsson et al. (2021). However, it is a major challenge to show howmorecomplexrecursive numeral systems, similar to for example English, could arise via a simple learning mechanism such as RL. Here, we introduce an approach towards deriving a mechanistic explanation of the emergence of efficient recursive number systems. We consider pairs of agents learning how to communicate about numerical quantities through a meta-grammar that can be gradually modified throughout the interactions. Utilising a slightly modified version of the meta-grammar of Hurford (1975), we demonstrate that our RL agents, shaped by the pressures for efficient communication, can effectively modify their lexicon towards Pareto-optimal configurations which are comparable to those observed within human numeral systems in terms of their efficiency.

numeral systems

efficient communication

reinforcement learning

Författare

Andrea Silvi

Data Science och AI 2

Göteborgs universitet

Jonathan David Thomas

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

Emil Carlsson

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

Devdatt Dubhashi

Göteborgs universitet

Data Science och AI 3

Moa Johansson

Data Science och AI 2

Göteborgs universitet

Proceedings of the Annual Meeting of the Cognitive Science Society

1069-7977 (ISSN)

Vol. 47 4700-4707


San Francisco, CA, USA,

Ämneskategorier (SSIF 2025)

Språkbehandling och datorlingvistik

Datavetenskap (datalogi)

Artificiell intelligens

Mer information

Senast uppdaterat

2026-01-13