Spatiotemporal-Attention Based Channel Prediction for UAV-RIS-Assisted LEO Satellite MIMO Communications
Artikel i vetenskaplig tidskrift, 2025

Low Earth orbit (LEO) satellite communications play a critical role in achieving global connectivity, yet they face significant challenges due to high satellite mobility and incomplete channel state information (CSI). Moreover, the integration of reconfigurable intelligent surfaces (RIS) in certain scenarios introduces additional complexities. In this paper, we propose a novel MIMO channel prediction framework tailored for LEO satellite communications involving unmanned aerial vehicle-mounted RIS (UAV-RIS), employing a spatiotemporal-attention (ST-attention) mechanism to capture both the spatial correlations among antennas and the temporal dynamics of rapidly varying channels. Furthermore, we leverage masked pretraining to enhance the model’s robustness under scenarios of severe CSI incompleteness, enabling effective reconstruction of missing channel information. Comprehensive simulations demonstrate that our approach outperforms traditional model-based predictors, whether historical CSI is fully available or only partially observed.

Författare

Mingyi Wang

Harbin Institute of Technology

Politecnico di Torino

Yizhou Peng

Nanyang Technological University

Ruofei Ma

Harbin Institute of Technology

Gongliang Liu

Harbin Institute of Technology

Weixiao Meng

Harbin Institute of Technology

Carla Fabiana Chiasserini

Göteborgs universitet

Chalmers, Data- och informationsteknik, Dator- och nätverkssystem

Roberto Garello

Politecnico di Torino

IEEE Transactions on Wireless Communications

15361276 (ISSN) 15582248 (eISSN)

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Telekommunikation

Signalbehandling

DOI

10.1109/TWC.2025.3630206

Mer information

Senast uppdaterat

2026-01-13