Generative flow-based warm start of the variational quantum eigensolver
Artikel i vetenskaplig tidskrift, 2026

Hybrid quantum-classical algorithms like the variational quantum eigensolver (VQE) show promise for quantum simulations on near-term quantum devices, but are often limited by complex objective functions and expensive optimization procedures. Here, we propose Flow-VQE, a generative framework leveraging conditional normalizing flows with parameterized quantum circuits to efficiently generate high-quality variational parameters. By embedding a generative model into the VQE optimization loop through preference-based training, Flow-VQE enables quantum gradient-free optimization and offers a systematic approach for parameter transfer, accelerating convergence across related problems through warm-started optimization. We compare Flow-VQE to a number of standard benchmarks through numerical simulations on molecular systems, including hydrogen chains, water, ammonia, and benzene. We find that Flow-VQE generally outperforms baseline optimization algorithms, achieving computational accuracy with fewer circuit evaluations (improvements range from modest to more than two orders of magnitude) and, when used to warm-start the optimization of new systems, accelerates subsequent fine-tuning by up to 50-fold compared with Hartree–Fock initialization. Therefore, we believe Flow-VQE can become a pragmatic and versatile paradigm for leveraging generative modeling to reduce the costs of variational quantum algorithms.

Författare

Hang Zou

Chalmers, Data- och informationsteknik, Data Science och AI

Martin Rahm

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Anton Frisk Kockum

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Simon Olsson

Chalmers, Data- och informationsteknik, Data Science och AI

npj Quantum Information

20566387 (eISSN)

Vol. 12 1 5

Ämneskategorier (SSIF 2025)

Teoretisk kemi

Datavetenskap (datalogi)

Beräkningsmatematik

DOI

10.1038/s41534-025-01159-x

Mer information

Senast uppdaterat

2026-01-16