Generative molecular dynamics
Artikel i vetenskaplig tidskrift, 2026

Understanding biomolecular function depends on bridging experimental observables with models that capture structural, stationary, and dynamical properties. Molecular dynamics (MD) simulations, in principle provide a bridge, but the sampling problem remains a fundamental roadblock toward this goal. In this mini-review, I outline recent progress in the area of Generative MD (GenMD)—an approach where generative AI (GenAI) is used to mimic the statistical distributions resulting from MD simulations, which are inaccessible using current numerical algorithms. Here, I highlight a few exemplars of GenMD and then outline open problems and current limitations.

Författare

Simon Olsson

Chalmers, Data- och informationsteknik, Data Science och AI

Göteborgs universitet

Current Opinion in Structural Biology

0959-440X (ISSN) 1879033x (eISSN)

Vol. 96 103213

Ämneskategorier (SSIF 2025)

Teoretisk kemi

Bioinformatik och beräkningsbiologi

Artificiell intelligens

DOI

10.1016/j.sbi.2025.103213

Mer information

Senast uppdaterat

2026-01-23