Phase-Only Positioning: Overcoming Integer Ambiguity Challenge Through Deep Learning
Paper i proceeding, 2025

This paper investigates the uplink carrier phase positioning (CPP) in cell-free (CF) or distributed-antenna-system context, assuming a challenging case where only the phase measurements are utilized as observations. In general, CPP can achieve sub-meter to centimeter-level accuracy but it is challenged by the integer ambiguity problem. In this work, we propose two deep learning approaches for phase-only positioning, overcoming the integer ambiguity challenge. The first one directly uses the phase measurements, while the second one first estimates the integer ambiguities and then it integrates them with the phase measurements for improved accuracy. Our numerical results demonstrate that an inference complexity reduction of two to three orders of magnitude is achieved, compared to the maximum likelihood baseline solution, depending on the approach and on the parameter configuration. This emphasizes the potential of the developed deep learning solutions for efficient and precise positioning in future CF 6G systems.

6G

cell-free

deep learning

carrier phase positioning

neural networks

integer ambiguities

Författare

Fatih Ayten

Tampereen Yliopisto

Mehmet C. Ilter

Tampereen Yliopisto

Ossi Kaltiokallio

Tampereen Yliopisto

Jukka Talvitie

Tampereen Yliopisto

Akshay Jain

Nokia

Elena-Simona Lohan

Tampereen Yliopisto

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Mikko Valkama

Tampereen Yliopisto

IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC

2025 IEEE 36th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Istanbul, Turkey,

6G DISAC

Europeiska kommissionen (EU) (101139130-6G-DISAC), 2024-01-01 -- 2026-12-31.

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Telekommunikation

DOI

10.1109/PIMRC62392.2025.11275391

Mer information

Senast uppdaterat

2026-01-27