Deep Learning Driven Design of Highly Efficient Harmonic-Tuned Class F-1 Power Amplifiers
Paper i proceeding, 2025

This paper demonstrates a deep-learning-driven approach for designing inverse class F (Class F−1) power amplifiers (PAs) with pixelated layout structures. We employ convolutional neural networks (CNNs) and evolutionary algorithms to synthesize the complete output network of the Class F−1PA, integrating matching, harmonic-tuning, and biasing functionalities into a unified design. To validate the concept, we constructed a prototype Class F−1PA using GaN HEMT transistors. The experimental results exhibit an output power of 40.9-41.5 dBm and a peak drain efficiency of 75%-83% over a 2.0-2.4 GHz frequency range. To the best of our knowledge, this is the first deep-learning-based Class F−1 PA design with a pixelated output network.

inverse Class F (Class F −1 )

power amplifier

waveform engineering

deep learning

GaN HEMT

machine learning

Artificial intelligence (AI)

energy efficiency

Författare

Han Zhou

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Haojie Chang

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Christian Fager

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

2025 55th European Microwave Conference, EuMC 2025

55th European Microwave Conference
Utrecht, Netherlands,

Adaptiva och energieffektiva front-ends för fixed-wireless access och 5G NR-U i frekvensbandet 57-71 GHz

VINNOVA (2022-00863), 2022-09-01 -- 2024-08-31.

Ämneskategorier (SSIF 2025)

Elektroteknik och elektronik

DOI

10.23919/EuMC65286.2025.11235187

Mer information

Senast uppdaterat

2026-02-05