Observation of quantum effects on radiation reaction in strong fields
Artikel i vetenskaplig tidskrift, 2026

Radiation reaction, the force experienced by an accelerated charge due to radiation emission, has long been the subject of extensive theoretical and experimental research. Experimental verification of a quantum, strong-field description of radiation reaction is fundamentally important, and has wide-ranging implications for astrophysics, laser-driven particle acceleration, next-generation particle colliders and inverse-Compton photon sources for medical and industrial applications. However, the difficulty of accessing regimes where strong field and quantum effects dominate inhibited previous efforts to observe quantum radiation reaction in charged particle dynamics with high significance. We report a high significance (> 5σ) observation of strong-field radiation reaction on electron spectra where quantum effects are substantial. We obtain quantitative, strong evidence favouring the quantum-continuous and quantum-stochastic models over the classical model; the quantum models perform comparably. The lower electron energy losses predicted by the quantum models account for their improved performance. Model comparison was performed using a novel Bayesian framework, which has widespread utility for laser-particle collision experiments, including those utilising conventional accelerators, where some collision parameters cannot be measured directly.

Författare

Eva E. Los

Imperial College London

E. Gerstmayr

Queen's University Belfast

Imperial College London

Stanford University

C. Arran

University of York

M. J.V. Streeter

Queen's University Belfast

Cary Colgan

Tokamak Energy Ltd

Imperial College London

Claudia C. Cobo

University of York

Imperial College London

Brendan Kettle

Imperial College London

Tom Blackburn

Göteborgs universitet

Nicolas Bourgeois

STFC Rutherford Appleton Laboratory

Luke Calvin

Queen's University Belfast

Jason Cardarelli

Michigan Engineering

Niall Cavanagh

Queen's University Belfast

Stephen J.D. Dann

STFC Rutherford Appleton Laboratory

Antonino Di Piazza

Max-Planck-Gesellschaft

University of Rochester

Rebecca Fitzgarrald

Michigan Engineering

Antony Ilderton

University of Edinburgh

Christoph H. Keitel

Max-Planck-Gesellschaft

Mattias Marklund

Chalmers, Fysik

Göteborgs universitet

P. McKenna

University of Strathclyde

C. D. Murphy

University of York

Z. Najmudin

Imperial College London

Peter Parsons

STFC Rutherford Appleton Laboratory

Queen's University Belfast

Paramel Pattathil Rajeev

STFC Rutherford Appleton Laboratory

D. R. Symes

STFC Rutherford Appleton Laboratory

Matteo Tamburini

Max-Planck-Gesellschaft

A. G. R. Thomas

Michigan Engineering

J. C. Wood

Deutsches Elektronen-Synchrotron (DESY)

Imperial College London

M. Zepf

Friedrich-Schiller-Universität Jena

Helmholtz-Gemeinschaft Deutscher Forschungszentren

G. Sarri

Queen's University Belfast

C. P. Ridgers

University of York

S. P. D. Mangles

Imperial College London

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 17 1 1157

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

Fusion, plasma och rymdfysik

Subatomär fysik

DOI

10.1038/s41467-025-67918-8

PubMed

41530130

Mer information

Senast uppdaterat

2026-02-13