Continuity of information transport in surjective cellular automata
Artikel i vetenskaplig tidskrift, 2007

We introduce a local version of the Shannon entropy in order to describe information transport in spatially extended dynamical systems, and to explore to what extent information can be viewed as a local quantity. Using an appropriately defined information current, this quantity is shown to obey a local conservation law in the case of one-dimensional reversible cellular automata with arbitrary initial measures. The result is also shown to apply to one-dimensional surjective cellular automata in the case of shift-invariant measures. Bounds on the information flow are also shown.

SYSTEMS

EQUATION

ENTROPY

MODEL

STATISTICAL-MECHANICS

LIMIT MEASURES

Författare

T. Helvik

Norges teknisk-naturvitenskapelige universitet

Kristian Lindgren

Chalmers, Energi och miljö

M. G. Nordahl

Chalmers University of Technology

Communications in Mathematical Physics

0010-3616 (ISSN) 1432-0916 (eISSN)

Vol. 272 1 53-74

Ämneskategorier

Övrig annan teknik

DOI

10.1007/s00220-007-0192-8