Zero modes for the magnetic Pauli operator in even-dimensional Euclidean space
Artikel i vetenskaplig tidskrift, 2008

We study the ground state of the Pauli Hamiltonian with a magnetic field in ℝ 2d , d > 1. We consider the case where a scalar potential W is present and the magnetic field B is given by B = 2i ∂∂W. The main result is that there are no zero modes if the magnetic field decays faster than quadratically at infinity. If the magnetic field decays quadratically then zero modes may appear, and we give a lower bound for the number of them. The results in this paper partly correct a mistake in a paper from 1993. © 2008 Springer.

ground-state

schrodinger-operators

charged-particle

fields

Författare

Mikael Persson

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Letters in Mathematical Physics

0377-9017 (ISSN) 1573-0530 (eISSN)

Vol. 85 2-3 111-128

Ämneskategorier

Annan fysik

DOI

10.1007/s11005-008-0265-4