A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity
Artikel i vetenskaplig tidskrift, 2009

In this note we propose a finite element method for incompressible (or compressible) elasticity problems with discontinuous modulus of elasticity (or, if compressible, Poisson’s ratio). The problem is written on mixed form using P1-continuous displacements and elementwise P0 pressures, leading to the possibility of eliminating the pressure beforehand in the compressible case. In the incompressible case, the method is augmented by a stabilization term, penalizing the pressure jumps. We show a priori error estimates under certain regularity hypothesis. In particular we prove that if the exact solution is sufficiently smooth in each subdomain then the convergence order is optimal.

Incompressible elasticity

Nitsche’s method

Extended finite element method

Stokes’ problem

Discontinuous coefficients

Surface tension


Roland Becker

Universite de Pau et des Pays de L'Adour

Erik Burman

University of Sussex

Peter F G Hansbo

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 198 3352-3360