Spreading of collimated particle beams within a generalized Fokker-Planck diffusion equation
Artikel i vetenskaplig tidskrift, 2009

Recently, an expansion of the Boltzmann scattering operator describing the angular spreading of particle beams was given that included the effects of large angle scattering processes, thus generalizing the classical Fokker-Planck equation, valid in the limit of small angle scattering. The present work aims at making an analytical comparison between predictions based on the classical Fokker-Planck equation and those based on a generalized one, which includes a first-order correction term in the expansion of the Boltzmann scattering operator. The analysis is carried out for thin slabs where backscattering effects can be neglected and makes use of a moment approach, which leads to an infinite system of recursively coupled ordinary differential equations. The system is truncated in a consistent manner, and the effects of large angle scattering on the evolution of the moments are determined in explicit analytical form. An approximate similarity solution of the generalized Fokker-Planck equation is also found, and the results of both approaches provide a clear picture of the increased diffusive beam spreading due to large angle scattering. A comparison with previously published Monte Carlo simulation results shows good agreement.

Författare

Robert Nyqvist

Chalmers, Institutionen för radio- och rymdvetenskap, Icke-linjär elektrodynamik

Dan Anderson

Chalmers, Institutionen för radio- och rymdvetenskap, Icke-linjär elektrodynamik

Mietek Lisak

Chalmers, Institutionen för radio- och rymdvetenskap, Icke-linjär elektrodynamik

Nuclear Science and Engineering

0029-5639 (ISSN) 1943748x (eISSN)

Vol. 163 1 85-90

Ämneskategorier

Fusion, plasma och rymdfysik

Mer information

Skapat

2017-10-07