Transient stuctures of PdO during CO oxidation over Pd(100)
Artikel i vetenskaplig tidskrift, 2015

In situ high-energy surface X-ray diffraction was employed to determine the surface structure dynamics of a Pd(100) single crystal surface acting as a model catalyst to promote CO oxidation. The measurements were performed under semi-realistic conditions, i.e. 100 mbar total gas pressure and 600 K sample temperature. The surface structure was studied in detail both in a steady gas ow and in a gradually changing gas composition with a time resolution of 0.5 sec. Our results show that \sqroot-PdO(101) surface oxide forms in a close to stoichiometric O2 and CO gas mixture as the mass-spectrometry indicates a transition to a highly active state with the reaction rate limited by the CO mass transfer to the Pd(100) surface. Using a low excess of O2 in the gas stoichiometry, islands of bulk oxide grow epitaxially in the same (101) crystallographic orientation of the bulk PdO unit cell according to a Stranski-Krastanov type of growth. The morphology of the islands is analyzed quantitatively. Upon further increase of the O2 partial pressure a polycrystalline Pd oxide forms on the surface.

SXRD

heterogeneous catalysis

PdO

CO oxidation

islands

HESXRD

Pd

Författare

Mikhail Shipilin

Lunds universitet

Johan Gustafson

Lunds universitet

Chu Zhang

Lunds universitet

Lindsay R. Merte

Lunds universitet

Andreas Stierle

Deutsches Elektronen-Synchrotron (DESY)

Uta Hejral

Deutsches Elektronen-Synchrotron (DESY)

Uta Ruett

Deutsches Elektronen-Synchrotron (DESY)

Olof Gutowski

Deutsches Elektronen-Synchrotron (DESY)

Magnus Skoglundh

Kompetenscentrum katalys

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Per-Anders Carlsson

Kompetenscentrum katalys

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Edvin Lundgren

Lunds universitet

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 119 27 15469-15476

Tidsupplösta in situ metoder för design av katalytiska säten för hållbar kemi

Vetenskapsrådet (VR) (2013-567), 2013-01-01 -- 2016-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Transport

Energi

Materialvetenskap

Ämneskategorier

Fysikalisk kemi

Den kondenserade materiens fysik

DOI

10.1021/acs.jpcc.5b04400

Mer information

Senast uppdaterat

2023-11-20