Ground-state electron transfer in all-polymer donor-acceptor heterojunctions
Artikel i vetenskaplig tidskrift, 2020

Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor–acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of ∼1013 cm–2. Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics.

Författare

Kai Xu

Linköpings universitet

Hengda Sun

Linköpings universitet

Tero Petri Ruoko

Linköpings universitet

Gang Wang

Linköpings universitet

Renee Kroon

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Nagesh B. Kolhe

University of Washington

Yuttapoom Puttisong

Linköpings universitet

X. J. Liu

Linköpings universitet

D. Fazzi

Universität zu Köln

Koki Shibata

Chiba University

Chi Yuan Yang

Linköpings universitet

Ning Sun

Yunnan University

Gustav Persson

Chalmers, Fysik, Nano- och biofysik

Andrew Yankovich

Chalmers, Fysik, Nano- och biofysik

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Hiroyuki Yoshida

Chiba University

W.M. Chen

Linköpings universitet

M. Fahlman

Linköpings universitet

M. Kemerink

Linköpings universitet

Samson A. Jenekhe

University of Washington

Christian Müller

Chalmers, Kemi och kemiteknik, Tillämpad kemi

M. Berggren

Linköpings universitet

S. Fabiano

Linköpings universitet

Nature Materials

1476-1122 (ISSN) 1476-4660 (eISSN)

Vol. 19 7 738-744

Ämneskategorier

Oorganisk kemi

Materialkemi

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1038/s41563-020-0618-7

Mer information

Senast uppdaterat

2020-10-06