Transverse collective modes in interacting holographic plasmas
Artikel i vetenskaplig tidskrift, 2020

We study in detail the transverse collective modes of simple holographic models in presence of electromagnetic Coulomb interactions. We render the Maxwell gauge field dynamical via mixed boundary conditions, corresponding to a double trace deformation in the boundary field theory. We consider three different situations: (i) a holographic plasma with conserved momentum, (ii) a holographic (dirty) plasma with finite momentum relaxation and (iii) a holographic viscoelastic plasma with propagating transverse phonons. We observe two interesting new features induced by the Coulomb interactions: a mode repulsion between the shear mode and the photon mode at finite momentum relaxation, and a propagation-to-diffusion crossover of the transverse collective modes induced by the finite electromagnetic interactions. Finally, at large charge density, our results are in agreement with the transverse collective mode spectrum of a charged Fermi liquid for strong interaction between quasi-particles, but with an important difference: the gapped photon mode is damped even at zero momentum. This property, usually referred to as anomalous attenuation, is produced by the interaction with a quantum critical continuum of states and might be experimentally observable in strongly correlated materials close to quantum criticality, e.g. in strange metals.

Gauge-gravity correspondence

Holography and condensed matter physics (AdS/CMT)

Författare

Matteo Baggioli

Universidad Autonoma de Madrid (UAM)

Ulf Gran

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Marcus Tornsö

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Journal of High Energy Physics

1126-6708 (ISSN) 1029-8479 (eISSN)

Vol. 2020 4 106

Ämneskategorier

Annan fysik

Fusion, plasma och rymdfysik

Den kondenserade materiens fysik

DOI

10.1007/JHEP04(2020)106

Mer information

Senast uppdaterat

2020-06-18