Laser-driven proton acceleration from ultrathin foils with nanoholes
Artikel i vetenskaplig tidskrift, 2021

Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with holes of nanometric size. By showing the lack of energy enhancement in comparison to standard flat foils, our results suggest that the high contrast routinely achieved with a double plasma mirror does not prevent damaging of the nanostructures prior to the main interaction. Particle-in-cell simulations support that even a short scale length plasma, formed in the last hundreds of femtoseconds before the peak of an ultrashort laser pulse, fills the holes and hinders enhanced electron heating. Our findings reinforce the need for improved laser contrast, as well as for accurate control and diagnostics of on-target plasma formation.

Författare

G. Cantono

Lunds universitet

Alexander Permogorov

Lunds universitet

Julien Ferri

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

E. Smetanina

Göteborgs universitet

Alexandre Dmitriev

Göteborgs universitet

Anders Persson

Lunds universitet

Tünde Fülöp

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

C.G. Wahlström

Lunds universitet

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 11 1 5006

Skena och skina

Europeiska kommissionen (EU) (EC/H2020/647121), 2015-10-01 -- 2020-09-30.

Ämneskategorier

Acceleratorfysik och instrumentering

Atom- och molekylfysik och optik

Fusion, plasma och rymdfysik

DOI

10.1038/s41598-021-84264-z

PubMed

33658533

Mer information

Senast uppdaterat

2022-03-02