Improved production of human hemoglobin in yeast by engineering hemoglobin degradation
Artikel i vetenskaplig tidskrift, 2021

With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes — these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production.

Reduced degradation

Saccharomyces cerevisiae

Human hemoglobin

Bilirubin biosensor

Heme

Författare

Olena Ishchuk

Chalmers, Biologi och bioteknik, Systembiologi

August T. Frost

Danmarks Tekniske Universitet (DTU)

Facundo Muniz

Chalmers, Biologi och bioteknik, Systembiologi

Saki Matsumoto

Chalmers, Biologi och bioteknik, Systembiologi

Nathalie Laforge

Chalmers, Biologi och bioteknik, Systembiologi

Nélida Leiva Eriksson

Lunds universitet

Jose Luis Martinez Ruiz

Chalmers, Biologi och bioteknik, Systembiologi

Danmarks Tekniske Universitet (DTU)

Dina Petranovic Nielsen

Novo Nordisk Foundation Center for Biosustainability

Chalmers, Biologi och bioteknik, Systembiologi

Metabolic Engineering

1096-7176 (ISSN) 1096-7184 (eISSN)

Vol. 66 259-267

Ämneskategorier

Biokemi och molekylärbiologi

Mikrobiologi

Annan industriell bioteknik

DOI

10.1016/j.ymben.2021.05.002

PubMed

33984513

Mer information

Senast uppdaterat

2021-05-24