The spherical ensemble and quasi-Monte-Carlo designs
Artikel i vetenskaplig tidskrift, 2024

The spherical ensemble is a well-known ensemble of N repulsive points on the two-dimensional sphere, which can realized in various ways (as a random matrix ensemble, a determinantal point process, a Coulomb gas, a Quantum Hall state..). Here we show that the spherical ensemble enjoys remarkable convergence properties from the point of view of numerical integration. More precisely, it is shown that the numerical integration rule corresponding to N nodes on the two-dimensional sphere sampled in the spherical ensemble is, with overwhelming probability, nearly a quasi-Monte-Carlo design in the sense of Brauchart-Saff-Sloan-Womersley for any smoothness parameter s≤ 2. The key ingredient is a new explicit sub-Gaussian concentration of measure inequality for the spherical ensemble.

Numerical integration

Concentration of measure

Coulomb gas

Quasi-Monte-Carlo designs

Författare

Robert Berman

Chalmers, Matematiska vetenskaper, Algebra och geometri

Constructive Approximation

0176-4276 (ISSN) 1432-0940 (eISSN)

Vol. 59 2 457-483

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Annan fysik

Sannolikhetsteori och statistik

DOI

10.1007/s00365-023-09646-0

Mer information

Senast uppdaterat

2024-04-04