Characterization of the Intrinsic and Extrinsic Resistances of a Microwave Graphene FET Under Zero Transconductance Conditions
Artikel i vetenskaplig tidskrift, 2023

Graphene field-effect transistors (GFETs) exhibit negligible transconductance under two scenarios: for any gate-to-source voltage when the drain-to-source voltage is set to zero and for an arbitrary drain-to-source voltage provided that the gate-to-source voltage equals the Dirac voltage. Hence, extracting the channel and the parasitic series resistances from S-parameters under these conditions enables analyzing their dependence on the gate and drain biases. This is fundamental to assess the portion of the output resistance that is controlled by the gate. Besides, the drain bias dependence of the drain and source resistances is also evidenced. Within the proposal, resistive components accounting for the lossy nature of the gate capacitance are incorporated into the model, which exhibits a broadband correlation with experimental data. This avoids the series resistances to be considered as frequency dependent in the model.

S-parameters

Dirac voltage

graphene

field-effect transistor (FET)

Författare

Xiomara Ribero-Figueroa

Instituto Nacional de Astrofísica, Óptica y Electrońica

Anibal Pacheco-Sanchez

Universitat Autonoma de Barcelona (UAB)

Aida Mansouri

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Pankaj Kumar

Politecnico di Milano

Omid Habibpour

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Herbert Zirath

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Roman Sordan

Politecnico di Milano

Francisco Pasadas

Universidad de Granada

David Jimenez

Universitat Autonoma de Barcelona (UAB)

Reydezel Torres-Torres

Instituto Nacional de Astrofísica, Óptica y Electrońica

IEEE Transactions on Electron Devices

0018-9383 (ISSN) 15579646 (eISSN)

Vol. 70 11 5977-5982

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Ämneskategorier (SSIF 2011)

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1109/TED.2023.3311772

Mer information

Senast uppdaterat

2024-03-07