Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools
Artikel i vetenskaplig tidskrift, 2009

Many filamentous fungi produce polyketide molecules with great significance as human pharmaceuticals; these molecules include the cholesterol-lowering compound lovastatin, which was originally isolated from Aspergillus terreus. The chemical diversity and potential uses of these compounds are virtually unlimited, and it is thus of great interest to develop a well-described microbial production platform for polyketides. Using genetic engineering tools available for the model organism Aspergillus nidulans, we constructed two recombinant strains, one expressing the Penicillium grisefulvum 6-methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA syntase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic processes. Transcriptome analysis of 6-MSA-producing strains grown on glucose and xylose in the presence and absence of xpkA overexpression, combined with flux and phsyiology data, enabled us to propose an xpkA-msaS interaction model describing the competition between biomass formation and 6-MSA production for the available acetyl coenzyme A.

Författare

Gianni Panagiotou

Danmarks Tekniske Universitet (DTU)

Mikael R. Andersen

Danmarks Tekniske Universitet (DTU)

Thomas Grotkjær

Fluxome Sciences A/S

T. B. Regueira

Danmarks Tekniske Universitet (DTU)

Jens B Nielsen

Chalmers

Danmarks Tekniske Universitet (DTU)

Lisbeth Olsson

Chalmers

Danmarks Tekniske Universitet (DTU)

Applied and Environmental Microbiology

0099-2240 (ISSN) 1098-5336 (eISSN)

Vol. 75 7 2212-2220

Ämneskategorier

Industriell bioteknik

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

DOI

10.1128/AEM.01461-08

Mer information

Senast uppdaterat

2018-09-10