Intelligent agents that learn from their past experiences
Research Project , 2020 – 2025

Embodied Artificial Intelligence is a multidisciplinary area that requires the cooperation of different fields such as computer science, engineering, robotics and dynamical systems. This PhD thesis will develop a novel learning algorithm to allow high-level intelligence, such as problem-solving and reasoning to be applied to real-world physical systems, e.g. robots. Mainly, this work will be focused on investigating learning methods on the semantic aspects of intelligence to develop general purpose solutions for robotic applications.


The goal of this PhD thesis is to develop compact and flexible model representations to allow robots the transference of their past experiences to current situations. These compact models should be human-readable to provide adequate feedback to the person interacting with the intelligent agent, e.g. a robot. This feedback should provide information to users, in an efficient form, about possible hazardous situations and potential errors, by predicting ahead-of-time the actions performed by either a human or a robot to infer their potential consequences. Thus, the communication between the users and the robots should be meaningful and bi-directional.

Participants

Karinne Ramirez-Amaro (contact)

Assistant Professor at Chalmers, Electrical Engineering, Systems and control, Mechatronics

Maximilian Diehl

Doctoral Student at Chalmers, Electrical Engineering, Systems and control, Mechatronics

Jonas Sjöberg

Full Professor at Chalmers, Electrical Engineering, Systems and control, Mechatronics

Collaborations

Chalmers AI Research Centre

Gothenburg, Sweden

Funding

Chalmers AI Research Centre (CHAIR)

Funding Chalmers participation during 2020–2025

Related Areas of Advance and Infrastructure

Information and Communication Technology

Areas of Advance

More information

Latest update

2020-02-07