Generation of phospholipid vesicle-nanotube networks and transport of molecules therein
Journal article, 2011

We describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires similar to 90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime.

sol-gel transition

electrophoretic transport

membrane nanotubes

giant unilamellar vesicles

electroformation

surfactant nanotubes

cells

enzymatic-reactions

lipid nanotubes

liposomes

Author

Aldo Jesorka

Chalmers, Chemical and Biological Engineering, Physical Chemistry

Natalia Stepanyants

Chalmers, Chemical and Biological Engineering, Physical Chemistry

HAIJIANG ZHANG

Chalmers, Chemical and Biological Engineering, Physical Chemistry

B. Ortmen

Bilkent University

Bodil Hakonen

Chalmers, Chemical and Biological Engineering, Nuclear Chemistry

Owe Orwar

Chalmers, Chemical and Biological Engineering, Physical Chemistry

Nature Protocols

1754-2189 (ISSN) 17502799 (eISSN)

Vol. 6 6 791-805

Subject Categories (SSIF 2011)

Chemical Sciences

DOI

10.1038/nprot.2011.321

More information

Latest update

5/24/2019