Spin transport and precession in graphene measured by nonlocal and three-terminal methods
Journal article, 2014

We investigate the spin transport and precession in graphene by using the Hanle effect in nonlocal and three-terminal measurement geometries. Identical spin lifetimes, spin diffusion lengths, and spin polarizations are observed in graphene devices for both techniques over a wide range of temperatures. The magnitude of the spin signals is well explained by spin transport models. These observations rules out any signal enhancements or additional scattering mechanisms at the interfaces for both geometries. This validates the applicability of both the measurement methods for graphene based spintronics devices and their reliable extractions of spin parameters.

Author

André Dankert

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Venkata Kamalakar Mutta

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Saroj Prasad Dash

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Johan Bergsten

Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics

Applied Physics Letters

0003-6951 (ISSN) 1077-3118 (eISSN)

Vol. 104 19 192403 - 192403

Areas of Advance

Nanoscience and Nanotechnology (2010-2017)

Materials Science

Subject Categories

Physical Sciences

Nano Technology

DOI

10.1063/1.4876060

More information

Created

10/7/2017