Robustness study of the different immittance spectra and frequency ranges in bioimpedance spectroscopy analysis for assessment of total body composition.
Journal article, 2014
The estimation of body fluids is a useful and common practice for assessment of disease status and therapy outcomes. Electrical bioimpedance spectroscopy (EBIS) methods are noninvasive, inexpensive and efficient alternatives for determination of body fluids. One of the main source of errors in EBIS measurements in the estimation of body fluids is capacitive coupling. In this paper an analysis of capacitive coupling in EBIS measurements was performed and the robustness of the different immittance spectra against it tested. On simulations the conductance (G) spectrum presented the smallest overall error, among all immittance spectra, in the estimation of the impedance parameters used to estimate body fluids. Afterwards the frequency range of 10-500 kHz showed to be the most robust band of the G spectrum. The accuracy of body fluid estimations from the resulting parameters that utilized G spectrum and parameters provided by the measuring device were tested on EBIS clinical measurements from growth hormone replacement therapy patients against estimations performed with dilution methods. Regarding extracellular fluid, the correlation between each EBIS method and dilution was 0.93 with limits of agreement of 1.06 ± 2.95 l for the device, 1.10 ± 2.94 l for G [10-500 kHz] and 1.04 ± 2.94 l for G [5-1000 kHz]. Regarding intracellular fluid, the correlation between dilution and the device was 0.91, same as for G [10-500 kHz] and 0.92 for G [5-1000 kHz]. Limits of agreement were 0.12 ± 4.46 l for the device, 0.09 ± 4.45 for G [10-500 kHz] and 0.04 ± 4.58 for G [5-1000 kHz]. Such close results between the EBIS methods validate the proposed approach of using G spectrum for initial Cole characterization and posterior clinical estimation of body fluids status.
Feasibility Studies
Algorithms
Electric Capacitance
Female
Male
Extracellular Fluid
Regression Analysis
physiology
Models
Middle Aged
drug effects
Factual
Hormone Replacement Therapy
physiology
Humans
Body Composition
therapeutic use
Growth Hormone
Databases
Computer Simulation
physiology
Electric Impedance
Body Fluids
methods
Intracellular Fluid
Biological
drug effects
Dielectric Spectroscopy