Integrated analysis of dynamic vehicle–track interaction and plasticity induced damage in the presence of squat defects
Journal article, 2016

Despite significant efforts, the mechanisms behind the formation of squats – a form of rolling contact fatigue (RCF) damage – are not fully understood. This study employs numerical simulations to investigate the propensity of squat initiation in the vicinity of small, isolated rail surface irregularities. Time-domain dynamic vehicle–track interaction analysis is used to obtain wheel–rail contact stress distributions, which are mapped onto a continuum finite element model that accounts for plastic deformation of the rail material. The evaluated stress and strain fields are quantified using two RCF impact measures: accumulated effective strain and the Jiang–Sehitoglu multiaxial low cycle fatigue parameter. It is shown that the RCF impact increases with increasing size of the surface irregularity and that clustering of irregularities might strongly promote RCF. The friction coefficient is identified as a very influential parameter and also the effect of variations in friction along the rail is evaluated.

Squats

RCF

Dynamic vehicle–track interaction

Rail surface irregularities

Author

Robin Andersson

Chalmers, Applied Mechanics, Material and Computational Mechanics

Peter Torstensson

Dynamics

Elena Kabo

Chalmers, Applied Mechanics, Material and Computational Mechanics

Fredrik Larsson

Chalmers, Applied Mechanics, Material and Computational Mechanics

Anders Ekberg

Dynamics

Wear

0043-1648 (ISSN)

Vol. 366-367 SI 139-145

Subject Categories (SSIF 2011)

Mechanical Engineering

Tribology

Materials Engineering

Vehicle Engineering

Areas of Advance

Transport

DOI

10.1016/j.wear.2016.05.014

More information

Created

10/7/2017