Traffic flow optimization with QoS constrained network admission control
Paper in proceeding, 2017

The paper proposes a control design method in order to gate input flow to a protected urban vehicular network such that travel time Quality of Service (QoS) constraints are preserved within the network. In view of the network to be protected (also called the region), two types of queues are distinguished: external and internal. While external queues represent vehicles waiting to enter the protected network, an internal queue can be used to describe the network's aggregated behaviour. By controlling the number of vehicles entering the internal queue, the travel time within the network subject to the vehicular conservation law and the Network Fundamental Diagram (NFD) can be subsequently controlled. The admission controller can thus be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed QoS requirements on travel time in the network and upper bound on the external queue are satisfied. The admission control problem is formulated as a constrained convex optimization problem and a Model Predictive Control (MPC) problem. A case study demonstrates the benefits of the admission control mechanisms proposed.

Traffic control

network fundamental diagram

admission

perimeter control

traffic flow

travel time

Quality of Service

Author

A Csikos

Hungarian Academy of Sciences

Hamed Farhadi

Chalmers, Signals and Systems, Systems and control

Balázs Adam Kulcsár

Chalmers, Signals and Systems, Systems and control

Themistoklis Charalambous

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Henk Wymeersch

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

IFAC-PapersOnLine

24058971 (ISSN) 24058963 (eISSN)

Vol. 50 1 5275-5280

20th IFAC World Congress
Toulouse, France,

Subject Categories (SSIF 2011)

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1016/j.ifacol.2017.08.610

More information

Latest update

7/4/2021 1