Large Eddy Simulation of Stratified Combustion in Spray-guided Direct Injection Spark-ignition Engine
Journal article, 2018

Stratified combustion in gasoline engines constitutes a promising means of achieving higher thermal efficiency for low to medium engine loads than that achieved with combustion under standard homogeneous conditions. However, creating a charge that leads to a stable efficient low-emission stratified combustion process remains challenging. Combustion through a stratified charge depends strongly on the dynamics of the turbulent fuel-air mixing process and the flame propagation. Predictive simulation tools are required to elucidate this complex mixing and combustion process under stratified conditions. For the simulation of mixing processes, combustion models based on large-eddy turbulence modeling have typically outperformed the standard Reynolds averaged Navier-Stokes methods. Therefore, we investigated spray-guided stratified combustion in a single cylinder engine using large-eddy turbulence modeling with a variant of the flame speed closure (FSC) model for premixed turbulent combustion. This model reveals the influence of the mixture composition on the flame speed. The effect of fluctuations in the composition were accounted for by using a presumed probability density function (PDF) approach for the mixture fraction. The fuel injection process was modeled with a standard Lagrangian spray model. More importantly, the measured in-cylinder pressure traces for three different loading cases with varying injection and ignition timings (leading to different levels of stratification) were accurately reproduced by the simulation. High-speed video images were used to evaluate the ability of the model to accurately simulate flame propagation under stratified conditions. The influence of mixture fluctuations on flame propagation was also investigated.

Author

Sandip Wadekar

Chalmers, Mechanics and Maritime Sciences (M2), Combustion and Propulsion Systems

Michael Oevermann

Chalmers, Mechanics and Maritime Sciences (M2), Combustion and Propulsion Systems

Andrei Lipatnikov

Chalmers, Mechanics and Maritime Sciences (M2), Combustion and Propulsion Systems

SAE Technical Papers

01487191 (ISSN) 26883627 (eISSN)

Vol. 2018-April

Subject Categories

Other Mechanical Engineering

Energy Engineering

Fluid Mechanics and Acoustics

DOI

10.4271/2018-01-1420

More information

Latest update

6/8/2022 2