Frequency Comb-Based WDM Transmission Systems Enabling Joint Signal Processing
Journal article, 2018

We review the use of optical frequency combs in wavelength-division multiplexed (WDM) fiber optic communication systems. In particular, we focus on the unique possibilities that are opened up by the stability of the comb-line spacing and the phase coherence between the lines. We give an overview of different techniques for the generation of optical frequency combs and review their use in WDM systems. We discuss the benefits of the stable line spacing of frequency combs for creating densely-packed optical superchannels with high spectral efficiency. Additionally, we discuss practical considerations when implementing frequency-comb-based transmitters. Furthermore, we describe several techniques for comb-based superchannel receivers that enables the phase coherence between the lines to be used to simplify or increase the performance of the digital carrier recovery. The first set of receiver techniques is based on comb-regeneration from optical pilot tones, enabling low-overhead self-homodyne detection. The second set of techniques takes advantage of the phase coherence by sharing phase information between the channels through joint digital signal processing (DSP) schemes. This enables a lower DSP complexity or a higher phase-noise tolerance.

digital signal processing (DSP)

coherent detection

fiber optic communication

carrier recovery

optical frequency comb

Author

Lars Lundberg

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Magnus Karlsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Abel Lorences Riesgo

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Mikael Mazur

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Victor Torres Company

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Jochen Schröder

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Peter Andrekson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Applied Sciences

2076-3417 (ISSN)

Vol. 8 5 718

Areas of Advance

Information and Communication Technology

Subject Categories

Telecommunications

Atom and Molecular Physics and Optics

Communication Systems

Signal Processing

DOI

10.3390/app8050718

More information

Latest update

7/2/2018 1