Towards a deep unified framework for nuclear reactor perturbation analysis
Paper in proceeding, 2018
unfolding
multi label classification
signal processing
recurrent neural networks
3D convolutional neural networks
long short-term memory
regression
nuclear reactors
deep learning
anomaly detection
Author
Fabio De Sousa Ribeiro
University of Lincoln
Francesco Calivá
University of Lincoln
Dionysios Chionis
Paul Scherrer Institut
Adbelhamid Dokhane
Paul Scherrer Institut
Antonios Mylonakis
Chalmers, Physics, Subatomic and Plasma Physics
Christophe Demaziere
Chalmers, Physics, Subatomic and Plasma Physics
Georgios Leontidis
University of Lincoln
Stefanos Kollias
University of Lincoln
2018 IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
120-127
978-1-5386-9276-9 (ISBN)
Bengaluru, India,
Core monitoring techniques and experimental validation and demonstration (CORTEX)
European Commission (EC) (EC/H2020/754316), 2017-09-01 -- 2021-08-31.
Subject Categories
Subatomic Physics
Other Physics Topics
Signal Processing
Areas of Advance
Energy
DOI
10.1109/SSCI.2018.8628637