Towards a deep unified framework for nuclear reactor perturbation analysis
Paper i proceeding, 2019
deep learning
signal processing
anomaly detection
regression
long short-term memory
3D convolutional neural networks
multi label classification
recurrent neural networks
unfolding
nuclear reactors
Författare
Fabio De Sousa Ribeiro
University of Lincoln
Francesco Calivá
University of Lincoln
Dionysios Chionis
Paul Scherrer Institut
Adbelhamid Dokhane
Paul Scherrer Institut
Antonios Mylonakis
Chalmers, Fysik, Subatomär fysik och plasmafysik
Christophe Demaziere
Chalmers, Fysik, Subatomär fysik och plasmafysik
Georgios Leontidis
University of Lincoln
Stefanos Kollias
University of Lincoln
2018 IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
120-127
978-1-5386-9276-9 (ISBN)
Bengaluru, India,
Core monitoring techniques and experimental validation and demonstration (CORTEX)
Europeiska kommissionen (EU) (EC/H2020/754316), 2017-09-01 -- 2021-08-31.
Styrkeområden
Energi
Ämneskategorier
Annan fysik
Signalbehandling
DOI
10.1109/SSCI.2018.8628637