Optimization-based coordination strategies for connected and autonomous vehicles
Doctoral thesis, 2019

Automated vehicles (AV) are expected to reach the consumer market within the next decade.
Once AVs become ubiquitous, they could resolve difficult traffic situations through communication-based cooperation.
Intersections are of particular interest in this context, as they form bottlenecks in the traffic system and are responsible for a large share of all accidents.
Rather than relying on traffic lights, road signs and rules, AVs could employ cooperative strategies to decide how an intersection should be crossed safely and efficiently.
However, designing efficient coordination strategies for AVs at intersections is challenging, as computationally hard problems are involved, with a safety-critical dependence on both wireless communication and imprecise sensing.

This thesis treats control algorithms for cooperative coordination of CAVs at intersections.
The proposed algorithms are based on Optimal Control (OC) formulations of the coordination problem and aim at finding the optimal control commands for each vehicle through a two-stage approximation procedure.
In the first stage, the order in which the vehicles cross the intersection is determined using a heuristic based on Mixed-Integer Quadratic Programming (MIQP).
In the second stage, the optimal control commands for each vehicle are found under a fixed crossing order.
Two algorithms are presented that solves the problem of the second stage in a communication efficient, distributed fashion.

In the first algorithm, the problem is decomposed into one master-problem and one sub-problem for each vehicle.
The master-problem is solved using a Sequential Quadratic Programming (SQP) algorithm, where most computations are performed in parallel on-board the vehicles.

In the second algorithm, the problem is solved using a Primal-Dual Interior Point (PDIP) method.
The computations involved are separable so that the largest part can be performed in parallel on-board the vehicles, a lesser part in parallel on lead-vehicles for each lane, and a small part at a central network node.

The two-stage approximation procedure is used in a Model Predictive Controller (MPC), and conditions for persistent feasibility and stability are derived.
Performance of the MPC-based closed-loop controller is assessed in simulation, and compared to traffic-lights and alternative coordination algorithms.
The results demonstrate that the two-stage approach outperforms existing alternatives, with almost zero average travel-time delay and a marginal increase in energy consumption compared to cruising at constant speed.

An MPC controller based on the SQP algorithm is verified experimentally at a test-track with three real vehicles.
The results demonstrate that efficient coordination is practically realizable through communication-based optimization and MPC.
In particular, the experiments show that the MPC algorithm performs well under adverse conditions with significant sensor noise, communication impairments and external perturbations.

Model Predictive Control

Optimization

Optimal Control

Connected Automated Vehicles

Intersection Coordination

HB3
Opponent: Christos G. Cassandras, Boston University, USA

Author

Robert Hult

Chalmers, Electrical Engineering, Systems and control

An MIQP-based heuristic for Optimal Coordination of Vehicles at Intersections

Proceedings of the IEEE Conference on Decision and Control,;Vol. December 2018(2018)p. 2783-2790

Paper in proceeding

Optimal Coordination of Automated Vehicles at Intersections: Theory and Experiments

IEEE Transactions on Control Systems Technology,;Vol. 27(2019)p. 2510-2525

Journal article

Energy-Optimal Coordination of Autonomous Vehicles at Intersections

2018 European Control Conference (ECC),;(2018)p. 602-607

Paper in proceeding

Optimisation-based coordination of connected, automated vehicles at intersections

Vehicle System Dynamics,;Vol. 58(2020)p. 726-747

Journal article

R. Hult, M. Zanon, S. Gros, P. Falcone "A Distributed Interior Point Algorithm for Optimal Coordination of Automated Vehicles at Intersections"

I den här avhandlingen presenteras metoder för koordinering av självkörande fordon vid vägkorsningar.
Idéen är att låta fordonen kommunicera med varandra och komma överens om hur de skall köra utan att kollidera.
När tillräckligt många bilar är självkörande innebär detta att trafikljus, stop- och väjningspliktsskyltar och företrädesregler blir överflödiga.
Därmed möjliggörs kontinuerliga trafikflöden, där inget fordon tvingas stanna för att vänta på ett annat.
Fördelarna är bland annat lägre energiförbrukning, kortare restider, ökad trafiksäkerhet, och ett mer effektivt utnyttjande av infrastruktur.

I avhandlingen presenteras flera reglersystem som möjliggör en sådan utveckling.
Dessa använder matematiska modeller för att förutse fordonens framtida position och hastighet.
Modellerna används för att ta fram de reglersignaler som förutses ge den mest effektiva kombinationen av acceleration och inbromsning hos alla fordon.
Detta kan exempelvis vara att ändra hastigheten på ett lätt fordon för att en lastbil skall slippa sakta ner.

Reglersignalerna tas fram genom att lösa matematiska optimeringsproblem.
Beräkningarna utförs i huvudsak ombord på fordonen och bygger på upprepad kommunikation mellan fordon och infrastruktur.
Detta ger skalbarhetsfördelar då varje fordon även tar med sig datorkraft.

Simuleringar visar att de framtagna reglersystemen är avsevärt bättre än både trafikljus och tidigare föreslagna metoder – både i termer av energiförbrukning och restidsförkortning.
Reglersystemen är även testade på riktiga fordon.
Det experimentellt beteendet styrker simuleringsresultaten och visar att reglersystemen är användbara under verkliga förhållanden med inexakt mätdata och kommunikationsstörningar.

COPPLAR CampusShuttle cooperative perception & planning platform

VINNOVA (2015-04849), 2016-01-01 -- 2018-12-31.

Distribuerad koordinering av mobila nätverks system i okända miljöer

Swedish Research Council (VR) (2012-4038), 2013-01-01 -- 2016-01-01.

Areas of Advance

Transport

Infrastructure

ReVeRe (Research Vehicle Resource)

Subject Categories

Vehicle Engineering

Control Engineering

Signal Processing

ISBN

978-91-7905-108-2

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4575

Publisher

Chalmers

HB3

Opponent: Christos G. Cassandras, Boston University, USA

More information

Latest update

1/13/2021