Laser Frequency Combs for Coherent Optical Communications
Journal article, 2019

Laser frequency combs with repetition rates on the order of 10 GHz and higher can he used as multi-carrier sources in wavelength-division multiplexing (WDM). They allow replacing tens of tunable continuous-wave lasers by a single laser source. In addition, the comb's line spacing stability and broadband phase coherence enable signal processing beyond what is possible with an array of independent lasers. Modern WDM systems operate with advanced modulation formats and coherent receivers. This introduces stringent requirements in terms of signal-to-noise ratio, power per line, and optical linewidth which can be challenging to attain for frequency comb sources. Here, we set quantitative benchmarks for these characteristics and discuss tradeoffs in terms of transmission reach and achievable data rates. We also highlight recent achievements for comb-based superchannels, including >10 Tb/s transmission with extremely high spectral efficiency, and the possibility to significantly simplify the coherent receiver by realizing joint digital signal processing. We finally discuss advances with microresonator frequency combs and compare their performance in terms of flatness and conversion efficiency against state-of-the-art electro-optic frequency comb generators. This contribution provides guidelines for developing frequency comb sources in coherent fiber-optic communication systems.

laser frequency combs

microresonator frequency combs

Coherent communications

wavelength division multiplexing

fiber-optic communication systems

Author

Victor Torres Company

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Jochen Schröder

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Attila Fülöp

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Mikael Mazur

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Lars Lundberg

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Òskar Bjarki Helgason

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Magnus Karlsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Peter Andrekson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Journal of Lightwave Technology

0733-8724 (ISSN) 1558-2213 (eISSN)

Vol. 37 7 1663-1670 8620214

Dark-Soliton Engineering in Microresonator Frequency Combs (DarkComb)

European Commission (EC) (EC/H2020/771410), 2018-05-01 -- 2023-04-30.

Subject Categories

Atom and Molecular Physics and Optics

Signal Processing

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/JLT.2019.2894170

More information

Latest update

4/5/2022 7