Detailed subject-specific FE rib modeling for fracture prediction
Journal article, 2019
Method: High resolution clinical CT data was used to generate detailed subject-specific geometry for twelve FE models of the sixth rib. The cortical bone periosteal and endosteal surfaces were estimated based on a previously calibrated cortical bone mapping algorithm. The cortical and the trabecular bone were modeled using a hexa-block algorithm. The isotropic material model for the cortical bone in each rib model was assigned subject-specific material data based on tension coupon tests. Two different modeling strategies were used for the trabecular bone. The capability of the FE model to predict fracture location was carried out by modeling physical dynamic anterior-posterior rib bending tests. The rib model predictions were directly compared to the results from the tests. The predicted force-displacement time history, strain measurements at four locations, and rotation of the rib ends were compared to the results from the physical tests by means of CORA analysis. Rib fracture location in the FE model was estimated as the position for the element with the highest first principle strain at the time corresponding to rib fracture in the physical test.
Results: Seven out of the twelve rib models predicted the fracture locations (at least for one of the trabecular modeling strategies) and had a force-displacement CORA score above 0.65. The other five rib models, had either a poor force-displacement CORA response or a poor fracture location prediction. It was observed that the stress-strain response for the coupon test for these five ribs showed significantly lower Young’s modulus, yield stress, and elongation at fracture compared to the other seven ribs.
Conclusion: This study indicates that rib fracture location can be predicted for subject specific rib models based on high resolution CT, when loaded in anterior-posterior bending, as long as the rib’s cortical cortex is of sufficient thickness and has limited porosity. This study provides guide-lines for further enhancements of rib modeling for fracture location prediction with HBMs.
HBM
finite element
fracture
rib
subject specific
Author
Johan Iraeus
Injury Prevention
Linus Lundin
ÅF Industry
Simon Storm
ÅF Industry
Amanda Agnew
Ohio State University
Yun-Seok Kang
Ohio State University
Andrew Kemper
Virginia Polytechnic Institute and State University
Devon Albert
Virginia Polytechnic Institute and State University
Sven Holcombe
University of Michigan
Bengt Pipkorn
Chalmers, Mechanics and Maritime Sciences (M2)
Traffic Injury Prevention
1538-9588 (ISSN) 1538-957X (eISSN)
Vol. 20 sup2 S88-S95Development of Implementable Omni-Directional Chest, Spine and Head Injury Criteria for Human Body Models
VINNOVA (2015-04864), 2016-02-01 -- 2018-12-31.
Areas of Advance
Transport
Subject Categories
Surgery
Vehicle Engineering
Public Health, Global Health, Social Medicine and Epidemiology
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
DOI
10.1080/15389588.2019.1665649