Molecular orientation in cellulose fibers and composites
Doctoral thesis, 2020

The scope of this thesis is to quantitatively investigate the molecular orientation distribution of regenerated cellulose fibers and composites. The molecular orientation is known to affect macroscopic properties such as tensile strength of the fiber. In addition, the quality of a carbon fiber is, to a great extent, determined by the molecular orientation of the precursor. A plethora of techniques are paramount for materials characterization and a handful of these are suited for determination of molecular orientation. Since different methods have various experimental limitations, methodological awareness is crucial in the strive for quantitative data and in particular when cellulose fibers and other polymers are chemically modified, or a part of a composite. This work concerns three methods in order to investigate molecular orientation: rotor synchronized magic angle spinning solid-state nuclear magnetic resonance spectroscopy (ROSMAS), polarized Raman spectroscopy, and X-ray scattering. The latter is already a proven method for analyzing molecular orientation and was therefore used as a reference for the two first methods, which have never previously been applied on cellulose fibers. ROSMAS was used to investigate the chemical shift anisotropy, which relates to molecular orientation, on a bundle of Lyocell fibers. Polarized Raman spectroscopy was used to analyze the molecular orientation distribution from the Raman vibrational tensor on a single fiber. A new method was developed for polarized Raman spectroscopy by assuming a wrapped Lorentzian orientation distribution function, as measured from X-ray scattering patterns. The results from both ROSMAS and polarized Raman spectroscopy were in agreement with X-ray scattering on a highly oriented cellulose fiber bundle and on a single regenerated cellulose fiber, respectively, indicating that these methods are quantitative. The ROSMAS and X-ray methodologies were applied to a stretched fiber consisting of a regenerated cellulose-lignin composite intended as a carbon fiber precursor. Finally, ROSMAS was also used for determination of the complete chemical shift anisotropy in the molecular reference frame on regio-regular poly(3-hexylthiophene) fibers, in addition to elucidation of backbone and side chain orientation.

In the grand perspective, resources have to be used efficiently to minimize environmental impact. Therefore, this work explores man-made environmentally benign cellulose alternatives to cotton and other polymers. These processes refine cellulose from plant life, typically trees, which can grow without pesticide on non-arable land.

composite

molecular orientation

lignin

solid-state NMR

Raman spectroscopy

fibers

X-ray scattering

carbon fibers

regenerated cellulose

Online
Opponent: prof. Leonard Mueller

Author

Leo Svenningsson

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Leo Svenningsson, Emmy Järsvall, Jonna Hynynen, Christian Müller and Lars Nordstierna. NMR chemical shift anisotropy reveals backbone and side chain orientation in meltspun poly(3-hexylthiophene) fibers

A revised solid-state NMR method to assess the crystallinity of cellulose

Cellulose,;Vol. 26(2019)p. 8993-9003

Journal article

Alla träd och växter består till stor del av cellulosa. Detta gör att de är starka mot naturens krafter och träd kan växa högt utan att falla ner. Cellulosans fascinerande egenskaper har använts i tusentals år av människor, bland annat i formen av textiler, och idag är det viktigare än någonsin att ta vara på ett av naturen mest användbara material.
Denna avhandling avser att analysera cellulosans ordning i framtidens naturmaterial. Textilfibrer från träd och återvunna kläder står högt på listan. Det gör även kolfibrer, från den starka cellulosan och trädens eget bindemedel, ligninet. Det är just ordningen av molekylerna i material som bidrar med positiva egenskaper, såsom materialets styrka.
Den undersökningsteknik som påvisar hög potential för att undersöka naturerns material utnyttjar den kärnmagnetiska resonansen, som är en inneboende egenskap hos atomer. Denna teknik används regelbundet för att undersöka molekylers struktur, små som stora. Här undersöks ordningen i cellulosan med hjälp av denna egenskap samt att resultaten jämförs med andra tekniker.
En direkt jämförelse mellan de tre huvudsakliga metoderna som används i denna avhandling har tidigare aldrig gjorts. Därtill har undersökningar av ordning i kompositer tidigare varit ett mycket svårt problem att lösa. Den kärnmagnetiska resonansen erbjuder ett unikt sätt att särskilja signaler från olika material, och således kan även kompositmaterial undersökas.

Subject Categories

Polymer Chemistry

Physical Chemistry

Biochemistry and Molecular Biology

Paper, Pulp and Fiber Technology

Materials Chemistry

Composite Science and Engineering

Infrastructure

C3SE (Chalmers Centre for Computational Science and Engineering)

Chalmers Materials Analysis Laboratory

Areas of Advance

Materials Science

ISBN

978-91-7905-241-6

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4708

Publisher

Chalmers

Online

Online

Opponent: prof. Leonard Mueller

More information

Latest update

11/12/2023