Energy-Efficient Implementation of Carrier Phase Recovery for Higher-Order Modulation Formats
Journal article, 2021

We introduce circuit implementations of one- and two-stage carrier phase recovery (CPR) for 256QAM coherent optical receivers. We describe in detail the optimizations of algorithms, such as modified Viterbi-Viterbi (mVV), blind phase search (BPS), and principal component-based phase estimation (PCPE), that are required to develop energy-efficient CPR circuits and show how design parameter settings and limited fixed-point resolution affect the SNR penalty. 30-GBaud CPR circuit netlists synthesized in a 22-nm CMOS process technology allow us to study trade-offs between energy per bit and SNR penalty. We show that it is possible to reach an energy dissipation of around 1 pJ/bit at an SNR penalty of 0.6 dB for two-stage PCPE+BPS and mVV+BPS implementations, and that PCPE+BPS is the preferred choice thanks to its smaller area.

digital signal processing

optical fiber communication

Application specific integrated circuits

very large scale integration

Author

Erik Börjeson

Chalmers, Computer Science and Engineering (Chalmers), Computer Engineering (Chalmers)

Per Larsson-Edefors

Chalmers, Computer Science and Engineering (Chalmers), Computer Engineering (Chalmers)

Journal of Lightwave Technology

0733-8724 (ISSN) 1558-2213 (eISSN)

Vol. 39 2 505-510 9209030

Energieffektiv och höghastighets-transmission i optisk fiber kommunikation

VINNOVA (2017-05228), 2018-01-01 -- 2019-12-31.

Energy-efficient optical fibre communication

Knut and Alice Wallenberg Foundation (KAW2013.0021), 2014-07-01 -- 2019-06-30.

Areas of Advance

Information and Communication Technology

Driving Forces

Sustainable development

Subject Categories (SSIF 2011)

Communication Systems

Embedded Systems

Signal Processing

DOI

10.1109/JLT.2020.3027781

More information

Latest update

2/3/2021 1