Dielectrically Loaded Quad-ridge Flared Horns for Ultra Wideband Reflector Feed Applications in Radio Astronomy
Doctoral thesis, 2022
This thesis introduces and investigates low-loss, dielectric loading of the QRFH design to achieve ultra-wideband performance that reaches beyond decade bandwidth exemplified with 20:1 bandwidth in one single QRFH. The dielectric load is homogeneous, with a small and non-intrusive footprint and improves the beamwidth performance over the frequency band, while keeping the complexity low and the QRFH footprint compact. Keeping the QRFH robustness and compact footprint is favorable for practical receiver installation in real-world applications for radio observations. Three quad-ridge designs with dielectric loading are investigated, both for room temperature and cryogenic applications, and are shown to be highly suitable for wideband operation in existing and future reflector arrays.
dielectric loaded antennas
dielectric materials
reflector antenna feeds
radio astronomy
ultra wideband antennas
quad-ridge flared horn (qrfh)
radio receivers
horn antennas
broadband antennas
aperture antennas.
Author
Jonas Flygare
Chalmers, Space, Earth and Environment, Onsala Space Observatory
BRAND: Ultra-Wideband Feed Development for the European VLBI Network - A Dielectrically Loaded Decade Bandwidth Quad-Ridge Flared Horn
IET Conference Publications,;Vol. 2018(2018)
Paper in proceeding
Dielectrically Loaded Quad-Ridge Flared Horn for Beamwidth Control Over Decade Bandwidth-Optimization, Manufacture, and Measurement
IEEE Transactions on Antennas and Propagation,;Vol. 68(2020)p. 207-216
Journal article
Strategy and Overview for Development of Beyond-Decade-Bandwidth Quad-ridge Flared Horns for Radio Astronomy
15th European Conference on Antennas and Propagation, EuCAP 2021,;(2021)
Paper in proceeding
Beyond-Decade Ultrawideband Quad-Ridge Flared Horn With Dielectric Load From 1 to 20 GHz
IEEE Transactions on Antennas and Propagation,;Vol. 71(2023)p. 2110-2125
Journal article
J. Flygare, S. Weinreb, D. P. Woody, Quad-ridge Choke Horn with Dielectric Load as a Wideband Feed for Non-cryogenic Reflector Arrays in Radio Astronomy
När vi tittar på science fiction-film ser vi kanske stora parabolantenner som vi antar är sändare och mottagare av radiosignaler till och från satelliter eller våra rymdfärjor. Ibland stämmer det i verkligheten, men ibland är de stora parabolerna inga sändare, utan enbart mottagare som inte letar efter starka radiovågor från satelliter utan istället svaga radiovågor från universum. Vi kallar dessa paraboler för radioteleskop. Radioteleskopet kom till av en slump år 1928, när Karl Jansky letade signalstörningar med en stor radioantenn. Han upptäckte samtidigt att radiovågor oväntat nog också kom från mitten av vår galax. Sedan Janskys upptäckt har radioastronomin blivit ett viktigt verktyg för astronomer att studera universum med, och kunna se sådant som vi inte kan se med kikarteleskop. Osynligt ljus från stjärnor på radiovåglängder, eller radiofrekvenser, kan färdas genom saker som synligt ljus inte kan göra obehindrat, till exempel moln i vår atmosfär. Desto mer radiofrekvenser vi kan studera från universum samtidigt, desto mer bredd på frekvensbandets information får vi – mer bandbredd. Denna avhandling behandlar hur man ökar bandbredden i radioteleskop genom att använda speciella material i mottagarens första komponent - mataren.
When we watch a science fiction movie, we might see large parabolic antennas that we assume are transmitters and receivers of radio signals to and from satellites or our space shuttles. Sometimes in reality this is the case, but sometimes those large parabolas are not transmitters, only receivers and they are not looking for strong radio waves from satellites, but weak radio waves from the universe. We call these parabolas radio telescopes. The radio telescope came about by chance in the year 1928 when Karl Jansky was looking for signal interference with a large radio antenna. He discovered at the same time that radio waves were also coming from the center of our galaxy. Since Jansky’s discovery, radio astronomy has become an important tool for astronomers to study the universe with, and be able to see things we cannot see with binocular-type telescopes. Invisible light from stars at radio wavelengths, or radio frequencies, can travel through things unaffected in a way visible light cannot, for example through clouds in our atmosphere. The more radio frequencies we can study from the universe simultaneously, the more width of the frequency band’s information we get – more bandwidth. This thesis explains how to increase bandwidth of radio telescopes by using special material in the receiver's first component - the feed.
RadioNet 4
European Commission (EC) (EC/H2020/730562), 2017-01-01 -- 2020-12-31.
Infrastructure
Onsala Space Observatory
Subject Categories
Electrical Engineering, Electronic Engineering, Information Engineering
ISBN
978-91-7905-649-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5115
Publisher
Chalmers
HC2, Hörsalsvägen 14, Campus Johanneberg
Opponent: Prof. Dirk I. L. de Villiers, Stellenbosch University, South Africa