Self-organized metabotyping of obese individuals identifies clusters responding differently to bariatric surgery
Journal article, 2023

Weight loss through bariatric surgery is efficient for treatment or prevention of obesity related diseases such as type 2 diabetes and cardiovascular disease. Long term weight loss response does, however, vary among patients undergoing surgery. Thus, it is difficult to identify predictive markers while most obese individuals have one or more comorbidities. To overcome such challenges, an in-depth multiple omics analyses including fasting peripheral plasma metabolome, fecal metagenome as well as liver, jejunum, and adipose tissue transcriptome were performed for 106 individuals undergoing bariatric surgery. Machine leaning was applied to explore the metabolic differences in individuals and evaluate if metabolism-based patients' stratification is related to their weight loss responses to bariatric surgery. Using Self-Organizing Maps (SOMs) to analyze the plasma metabolome, we identified five distinct metabotypes, which were differentially enriched for KEGG pathways related to immune functions, fatty acid metabolism, protein-signaling, and obesity pathogenesis. The gut metagenome of the most heavily medicated metabotypes, treated simultaneously for multiple cardiometabolic comorbidities, was significantly enriched in Prevotella and Lactobacillus species. This unbiased stratification into SOM-defined metabotypes identified signatures for each metabolic phenotype and we found that the different metabotypes respond differently to bariatric surgery in terms of weight loss after 12 months. An integrative framework that utilizes SOMs and omics integration was developed for stratifying a heterogeneous bariatric surgery cohort. The multiple omics datasets described in this study reveal that the metabotypes are characterized by a concrete metabolic status and different responses in weight loss and adipose tissue reduction over time. Our study thus opens a path to enable patient stratification and hereby allow for improved clinical treatments.

Author

Dimitra Lappa

Chalmers, Life Sciences, Systems and Synthetic Biology

A. S. Meijnikman

Spaarne Gasthuis

University of Amsterdam

Kimberly A. Krautkramer

Wallenberg Lab.

Lisa M. Olsson

Wallenberg Lab.

O. Aydin

University of Amsterdam

Spaarne Gasthuis

Anne Sophie Van Rijswijk

Spaarne Gasthuis

Y. I.Z. Acherman

Spaarne Gasthuis

Maurits de Brauw

Spaarne Gasthuis

Valentina Tremaroli

Wallenberg Lab.

L. E. Olofsson

Wallenberg Lab.

Annika Lundqvist

Wallenberg Lab.

S. Hjorth

University of Copenhagen

Boyang Ji

Chalmers, Life Sciences, Systems and Synthetic Biology

V. E.A. Gerdes

Spaarne Gasthuis

University of Amsterdam

Albert K. Groen

University of Groningen

University of Amsterdam

Thue W. Schwartz

University of Copenhagen

M. Nieuwdorp

Wallenberg Lab.

University of Amsterdam

Fredrik Bäckhed

Sahlgrenska University Hospital

University of Copenhagen

Wallenberg Lab.

Jens B Nielsen

Chalmers, Life Sciences, Systems and Synthetic Biology

Copenhagen N

PLoS ONE

1932-6203 (ISSN) 19326203 (eISSN)

Vol. 18 3 e0279335-

Subject Categories

Endocrinology and Diabetes

Surgery

Gastroenterology and Hepatology

DOI

10.1371/journal.pone.0279335

PubMed

36862673

More information

Latest update

3/16/2023