Kraft cooking of birch wood chips: Differences between the dissolved organic material in pore and bulk liquor
Journal article, 2023

The delignification of birch chips during kraft pulping was investigated, targeting both the impregnation and cooking steps. Wood chips were impregnated using white liquor, white liquor + NaCl, water or NaCl aqueous solution. Then, the chips were cooked in batch autoclaves applying the same constant composition cooking conditions for all samples. Pulp and two fractions of black liquor (bulk liquor and centrifuged liquor representing the liquor inside the wood chips and fibers) were collected after different pulping times and analyzed for lignin and carbohydrate content. The dissolved wood components were precipitated from selected samples and characterized with respect to composition, molecular weight distribution and structural motifs. Cooking chemicals in the impregnation liquors led to faster delignification and xylan removal during cooking. Higher contents of lignin and xylan were measured in the lumen than in the bulk. The concentration profiles also showed accumulation of dissolved material in the lumen over time, suggesting significant mass transport limitation from lumen to bulk. Further analysis revealed higher fragmentation/degradation of dissolved material with increasing pulping time and in the bulk when compared to the lumen liquor, as demonstrated by the lower molecular weights and the changes in chemical shifts in the NMR spectra.

impregnation

kraft delignification

mass transport

black liquor

hardwood

Author

Linus Kron

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Carolina Marion de Godoy

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Merima Hasani

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Hans Theliander

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Holzforschung

0018-3830 (ISSN) 1437-434X (eISSN)

Vol. 77 8 598-609

Subject Categories

Paper, Pulp and Fiber Technology

DOI

10.1515/hf-2023-0018

More information

Latest update

3/7/2024 9