Surpassing the nonlinear conversion efficiency of soliton microcombs
Journal article, 2023

Laser frequency combs are enabling some of the most exciting scientific endeavours in the twenty-first century, ranging from the development of optical clocks to the calibration of the astronomical spectrographs used for discovering Earth-like exoplanets. Dissipative Kerr solitons generated in microresonators currently offer the prospect of attaining frequency combs in miniaturized systems by capitalizing on advances in photonic integration. Most of the applications based on soliton microcombs rely on tuning a continuous-wave laser into a longitudinal mode of a microresonator engineered to display anomalous dispersion. In this configuration, however, nonlinear physics precludes one from attaining dissipative Kerr solitons with high power conversion efficiency, with typical comb powers amounting to ~1% of the available laser power. Here we demonstrate that this fundamental limitation can be overcome by inducing a controllable frequency shift to a selected cavity resonance. Experimentally, we realize this shift using two linearly coupled anomalous-dispersion microresonators, resulting in a coherent dissipative Kerr soliton with a conversion efficiency exceeding 50% and excellent line spacing stability. We describe the soliton dynamics in this configuration and find vastly modified characteristics. By optimizing the microcomb power available on-chip, these results facilitate the practical implementation of a scalable integrated photonic architecture for energy-efficient applications.

Author

Òskar Bjarki Helgason

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Marcello Girardi

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Zhichao Ye

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Fuchuan Lei

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Jochen Schröder

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Victor Torres Company

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Nature Photonics

1749-4885 (ISSN) 17494893 (eISSN)

Vol. 17 11 992-999

Dark-Soliton Engineering in Microresonator Frequency Combs (DarkComb)

European Commission (EC) (EC/H2020/771410), 2018-05-01 -- 2023-04-30.

Multidimensional coherent communications with microcombs

Swedish Research Council (VR) (2020-00453), 2020-12-01 -- 2026-11-30.

Integrerade optiska sändare för våglängdsmultiplexering i datacenternätverk

Swedish Research Council (VR) (2016-06077), 2017-01-01 -- 2022-12-31.

Multimod ickelinjär fotonik på ett chip

Swedish Research Council (VR) (2017-05157), 2018-01-01 -- 2021-12-31.

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Other Physics Topics

Computer Science

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1038/s41566-023-01280-3

More information

Latest update

3/7/2024 9