Model Predictive Control for Safe Autonomous Driving Applications
Book chapter, 2023

Although Model Predictive Control is widely used in motion planning and control for autonomous driving applications, accommodating closed-loop stability with respect to an arbitrary reference trajectory and avoidance of pop-up or moving obstacles is still an open problem. While it is well-known how to design a closed-loop stable MPC with respect to a reference trajectory that satisfies the system dynamics, this chapter discusses how to guarantee stability of a vehicle motion planner and controller when a user-provided arbitrary reference is used. Furthermore, the proposed MPC scheme enables recursive collision-avoidance constraint satisfaction in the presence of pop-up or moving obstacles (e.g., pedestrians, cyclists, human-driven vehicles), provided that their predicted future motion trajectory is available together with some uncertainty bound and satisfies some mild requirement. The proposed motion planner and controller is demonstrated through simulations.

Author

Ivo Batkovic

Zenseact AB

Chalmers, Electrical Engineering, Systems and control

Mario Zanon

IMT School for Advanced Studies

Paolo Falcone

Chalmers, Electrical Engineering, Systems and control

University of Modena and Reggio Emilia

Lecture Notes in Intelligent Transportation and Infrastructure

25233440 (ISSN) 25233459 (eISSN)

Vol. Part F1376 255-282

Subject Categories

Transport Systems and Logistics

Vehicle Engineering

Robotics

Control Engineering

DOI

10.1007/978-3-031-06780-8_9

More information

Latest update

7/12/2024