Deep learning denoising by dimension reduction: Application to the ORION-B line cubes
Journal article, 2023
Methods: data analysis
Techniques: imaging spectroscopy
ISM: clouds
Methods: statistical
Techniques: image processing
Radio lines: ISM
Author
Lucas Einig
Institut de Radioastronomie Millimétrique (IRAM)
Grenoble Alpes University
J. Pety
Paris Observatory
Institut de Radioastronomie Millimétrique (IRAM)
Antoine Roueff
University of Toulon
Paul Vandame
Grenoble Alpes University
Jocelyn Chanussot
Grenoble Alpes University
M. Gerin
Paris Observatory
Jan Orkisz
Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics
Pierre Palud
Paris Observatory
University of Lille
Miriam G. Santa-Maria
CSIC - Instituto de Fisica Fundamental (IFF)
Victor De Souza Magalhaes
Institut de Radioastronomie Millimétrique (IRAM)
Ivana Bešlić
Paris Observatory
Sébastien Bardeau
Institut de Radioastronomie Millimétrique (IRAM)
E. Bron
Paris Observatory
Pierre Chainais
University of Lille
J.R. Goicoechea
CSIC - Instituto de Fisica Fundamental (IFF)
P. Gratier
Laboratoire d'Astrophysique de Bordeaux
Viviana Guzman
Pontificia Universidad Catolica de Chile
A. Hughes
Institut de Recherche en Astrophysique et Planétologie (IRAP)
Jouni Kainulainen
Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics
David Languignon
Paris Observatory
Rosine Lallement
Observatoire de Paris-Meudon
F. Levrier
Laboratoire de Physique de l’Ecole Normale Supérieure
D. C. Lis
California Institute of Technology (Caltech)
Harvey Liszt
National Radio Astronomy Observatory
Jacques Le Bourlot
Paris Observatory
Franck Le Petit
Paris Observatory
K. I. Öberg
Harvard-Smithsonian Center for Astrophysics
Nicolas Peretto
Cardiff University
Evelyne Roueff
Paris Observatory
A. Sievers
Institut de Radioastronomie Millimétrique (IRAM)
Pierre Antoine Thouvenin
University of Lille
P., Tremblin
University Paris-Saclay
Astronomy and Astrophysics
0004-6361 (ISSN) 1432-0746 (eISSN)
Vol. 677 A158Subject Categories
Probability Theory and Statistics
Signal Processing
DOI
10.1051/0004-6361/202346064