Predicting occupant head displacements in evasive maneuvers; tuning and comparison of a rotational based and a translational based neck muscle controller
Journal article, 2023

Objective: Real-life car crashes are often preceded by an evasive maneuver, which can alter the occupant posture and muscle state. To simulate the occupant response in such maneuvers, human body models (HBMs) with active muscles have been developed. The aim of this study was to implement an omni-directional rotational head-neck muscle controller in the SAFER HBM and compare the bio-fidelity of the HBM with a rotational controller to the HBM with a translational controller, in simulations of evasive maneuvers.
Methods: The rotational controller was developed using an axis-angle representation of head rotations, with x, y, and z components in the axis. Muscle load sharing was based on rotational direction in the simulation and muscle activity recorded in three volunteer experiments in these directions. The gains of the rotational and translational controller were tuned to minimize differences between translational and rotational head displacements of the HBM and volunteers in braking and lane change maneuvers using multi-objective optimizations. Bio-fidelity of the model with tuned controllers was evaluated objectively using CORrelation and Analysis (CORA).
Results: The results indicated comparable performance for both controllers after tuning, with somewhat higher bio-fidelity for rotational kinematics with the translational controller. After tuning, good or excellent bio-fidelity was indicated for both controllers in the loading direction (forward in braking, and lateral in lane change), with CORA scores of 0.86−0.99 and 0.93−0.98 for the rotational and translational controllers, respectively. For rotational displacements, and translational displacements in the other directions, bio-fidelity ranged from poor to excellent, with slightly higher average CORA scores for the HBM with the translational controller in both braking and lane changing. Time-averaged muscle activity was within one standard deviation of time-averaged muscle activity from volunteers.
Conclusion: Overall, the results show that when tuned, both the translational and rotational controllers can be used to predict the occupant response to an evasive maneuver, allowing for the inclusion of evasive maneuvers prior to a crash in evaluation of vehicle safety. The rotational controller shows potential in controlling omni-directional head displacements, but the translational controller outperformed the rotational controller. Thus, for now, the recommendation is to use the translational controller with tuned gains.

controller tuning

active human body model

SAFER HBM

pre-crash

omni-directional control

Author

Emma Larsson

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Johan Iraeus

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Bengt Pipkorn

Autoliv AB

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Jan Östh

Volvo

Chalmers, Mechanics and Maritime Sciences (M2), Fluid Dynamics

Patrick A. Forbes

Erasmus University Rotterdam

Johan Davidsson

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Frontiers in Bioengineering and Biotechnology

2296-4185 (eISSN)

Vol. 11 1313543

Subject Categories

Vehicle Engineering

Control Engineering

DOI

10.3389/fbioe.2023.1313543

PubMed

38283169

More information

Latest update

2/2/2024 1